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A solution is obtained for the problem of the temperature distribution in a nar- 
row slit gap between a motionless heated disk and a moving disk with a subliming 
coating. It is established that rotation leads to intensification of the heat- 
transfer process. 

Analytical solution of the problem of the influence of sublimation on the heat transfer 
in the gap between motionless circular disks was considered in [i]. Distortion of the tem- 
perature profile across the slit in comparison with a plane channel was noted, as a conse- 
quence of the specific features of glow with cylindrical geometry. In the present work, the 
problem of [I] is generalized to the case of rotation of a disk with a subliming coating 
about a vertical symmetry axis.* 

i. Consider steady laminar flow of solidifying-gas vapor in a narrow slit gap between 
circular, parallel, horizontal disks (Fig. i). It is assumed that the lower disk is subjected 
to a constant uniformly distributed heat flux q. Sublimation of material at a constant rate 
vc occurs from the upper disk, rotating uniformly at angular velocity m about the vertical 
axis. The problem is solved in a cylindrical coordinate system, the z axis of which is direct- 
ed along the disk axis and the r axis along the slit radius; the coordinate origin is at the 
center of the lower disk. Assuming that the problem is rotationally symmetric, the flow is 
described using the mass-transfer equations in the following dimensionless form: 
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In reducing gqs. (1)-(4) to dimensionless form, the components of the gas velocity vec- 
tor were referred to Ve, the pressure to PV2c , and the coordinates to the distance between 

the disks H. 

The solution of Eqs. (1)-(4) is sought in the form 

r f ,  = (5) . _  (z), v r~(z), ~ = f ( z ) ,  
2 

where f and ~, are dimensionless functions of the axial coordinate z. In this case, the con- 
tinuity equation -- Eq. (4) -- is identically satisfied, and the equations of motion -- Eqs. (i)- 

(3) --take the form 

f . . . .  R e /  1 f f , ,  ) 2 Op (6) -~ T f'~ - -  2m~ - -  Re - - ,  
r Or 

*The problem is solved in the quasisteady approximation: for a fixed height of the gas gap 
H, the temperature profile and gas velocity are regarded as steady. 
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Flow pattern in slit gap. Fig. i. 
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Temperature profile in gap between disks: I) Pe = 0; 
20; 4) 28.3. 

qr - -  Re (f~#' - -  q~f') = 0,  (7) 

F - - i f ' R e  = Re dR (8) 
Oz 

Eliminating the pressure in the gas p from Eqs. (6) and (8) by cross differentiation 
with respect to z and r, a system of two ordinary differential equations in the functions f 
and �9 is obtained: 

~"-- R~(hp' -- ~t') = o. 

The boundary conditions for Eqs. 
motionless disks 

=- const, (9) 

(i0) 

(9) and (lO) are the adhesion conditions at the moving and 

u = O ,  v=(or ,  ~ =  1, z =  1; 
(11)  

u = O ,  v - - O ,  w = O ,  z = O .  

On the basis of Eq. (5), Eq. (Ii) is transformed to give 

[ ' = 0 ,  (p=o) ,  [ = 1 ,  z =  1; 

/ ' = o ,  q~=o, / = o ,  z = o .  
( 1 2 )  

The system in Eqs. 
successive approximation, assuming that the Reynolds number of the flow is small. 
case, the equations and boundary conditions of the zero approximation are 

[~'" = ko = const,  q~ = 0, 

I~=0,  q~o=~, f o = l ,  z = t ,  

/.~=0, ~;o=0, f,,.-0, z = O ,  

(9) and (i0) is solved, taking account of Eq. (12), by the method of 
In this 

( 1 3 )  

(14) 

and their solution is 

fo ..... 3z~ 2z :~, k 0 . . . . . .  12, %= :~oz .  

The equation and boundary conditions for f in the next approximation are 

( 1 5 )  

i ,~, ( 1 6 )  [ ~ " - / - ~ - - f ~ r  for r' 2,i:i) --. k,  .= const,  

/ ; . - = 0 ,  /, =0 ,  z :~_: / i  . :0, f , : : 0 ,  z : : , 0 .  ( 1 7 )  
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Note that below, in solving the heat-conduction equation, only an expression for the compon- 
ents of the velocity vector w is required and, therefore~ the first approximation for the 
function (p is not considered here. 

Integration of Eq. (16), taking account of Eq. (17), gives 

fl 1 z~ ! "z 6 +  9 za 13 f 1 
35 10 " 35 70 ~. 30 

Thus, with an accuracy of o(Re=), 

1 z a ,  1 - z?' ]. (18) 
I0 15 J 

w = / ( z ) = 3 z  ~ 2 z a + R e [  1 z't 1 z6q_ 9 z a 13 z2 +~o=( 1 z 5 1 za_b, 1 )] . . . . . . .  z 2 . (19) 
35 10 35 70 , 30 10 15 

When ~ = 0, Eq. (19) transforms to the well-known expression for w with sublimation in 
the gap between motionless disks [i]. 

2. Now consider the heat-conduction equation. Taking account of the assumption that 
the temperature difference along the slit radius is slight for the case of rotational sym- 
metry, this equation may be written in the following dimensionless form: 

dT d2T 
w Pe = (20) 

dz dz 2 

Here and be low,  e q u a t i o n s  a r e  b ro u g h t  to  d i m e n s i o n l e s s  form by r e f e r r i n g  the  d i m e n s i o n a l  
t e m p e r a t u r e  to  i t s  v a l u e  a t  t he  s u r f a c e  of  t h e  s u b l i m i n g  d i s k  T c .  The boundary  c o n d i t i o n s  
f o r  Eq. (20) a r e  t he  c o n d i t i o n  of  c o n s t a n t  s u b l i m a t i o n  t e m p e r a t u r e  

T = I ,  z = l  (21) 

and the  h e a t - b a l a n c e  c o n d i t i o n  a t  the  upper  d i s k  [1] 

dT 
- - - -  m, z - -  1. (22) 
dz 

Then, t he  a c c u r a t e  s o l u t i o n  o f  Eqs. ( 20 ) - (22 )  i s  w r i t t e n  i n  t h e  form 

2 

T(z )=  1 - - m J ' e x p [ P e . i  w(z)dz]dz. (23) 
1 1 

Using Eq. (19) ,  i n t e g r a t i o n  l e a d s  t o  the  t e m p e r a t u r e  d i s t r i b u t i o n  a c r o s s  the  gap between 
the disks in the form 

T(z) 1 - - m e x p [ (  1 ~ ) 1 ] z { 1 = R e - - - - -  Pet 'exp z a - - z  ~q- 
120 360 " 2 "1 2 

[ z s z ~ 9z ~ 13z 3 ( z  6 z ~ z + ) ] }  
q-Re  280 7~- -~ 140 2IV q-~2 _ _  - -  -~ Pedz. 180 4O 

(24) 

Equation (24) is fairly unwieldy and inconvenient for use in specific numerical calculations. 
It may be simplified by assuming that, as well as the Reynolds number, the Peclet number is 
also sufficiently small. Neglecting terms including the product PeRe (terms with m= are re- 
tained in view of the possible large values of m), the following simpler relation is obtained 

[I i) ]z {[ z, } 
---- Re---- Pe i'exp z 3-- + Re[ -- + Pe dz. (25) 

T ( z ) =  1 - - m e x p  360 2 .1 2 , 180 40 45 ) 

Using the approximation of an exponential with an infinitesimal exponent, integration 
leads to the final form of the dependence of the temperature on the coordinate across the gap 

__ __ , ..... q- q- RePew 2 -(26) T ( z ) = l - - m  z - - 1  q - - -  P e - r  
10 4 2 20 260 200 180 360 

It is simple to establish, by direct substitution, that, despite the various simplifica- 
tions, the expression for T(z) in Eq. (26) absolutely accurately satisfies the boundary con- 
ditions in Eqs. (21) and (22) and satisfies Eq. (20) with an accuracy of o(Pe =, PeRt, Rea). 

434 



The form of the temperature profile in the gap between the disks according to Eq. (26) 
is shown in Fig. 2 for various values of the angular velocity of rotation of the upper disk 
w. It is evident that, with increase in ~, the temperature of the heated disk (z = 0) falls. 
This indicates higher efficiency of the thermal protection in the case of a rotating disk with 
a subliming coating. 

Note, in conclusion, that in a series of cases it is more expedient to estimate the heat- 
transfer intensity not from the change in temperature profile in Eq. (26) but from the value 
of the dimensionless heat-transfer coefficient Nu at the channel walls 

1 dT 
Nu = (27) 

T (1) -- r (0) dz 

H e r e  t h e  t e m p e r a t u r e  g r a d i e n t  d T / d z  i s  d e t e r m i n e d  i n  t h e  f o l l o w i n g  f o r m ,  t a k i n g  a c c o u n t  o f  
t h e  a b o v e  s i m p l i f y i n g  a s s u m p t i o n s  

dT m 1 +  ('z a z~ 1 ~ p e  + + - -  R e P e o  2 
dz \ 2 2 J 180 40 45 360 - (28)  

In this case, 

I ( i ) 
N u ( 1 ) =  7 1 , N u ( 0 ) =  1 - -  P e - - - - R e P e ~  ~ Nu(1). (29)  

1 - - - - -  Pe - -  Re Pe ~ 2 360 
20 700 

It is readily evident that Nu(1) increases with increase in m, while Nu(0) decreases. 
At the same time, the temperature difference across the slit 

m 
A T  = T (0) - -  T (1) 

Nu (1) 

decreases in inverse proportion to Nu(1) as ~ increases, which indicates an overall increase 
in heat-transfer intensity on account of the rotation of the subliming disk. 

NOTATION 

H, height of the gas gap; q, heat-flux intensity; ~, angular velocity of rotation; Vc, 
sublimation rate; z, r, coordinates of cylindrical system; 0, density; p, pressure in gas 
gap; Tc, sublimation temperature; Nu, Re, Pe, Nusselt, Reynolds, and Peclet numbers; rc, heat 
of sublimation; m = Perc/Tccp, dimensionless complex. 

i. 

LITERATURE CITED 

V. F. Getmanets and R. S. Mikhal'chenko, "Heat and mass transfer in plane channels in 
conditions of gas injection from a sublimation surface," in: Hydrodynamics and Heat 
Transfer in Cryogenic Systems [in Russian], Naukova Dumka, Kiev (1977), pp. 24-36. 

435 


